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Abstract

We introduce a novel wavelet-based tree structure,
termed TSA-tree, which improves the efficiency of multi-
level trend and surprise queries on time sequence data.
With the explosion of scientific observation data (some
conceptualized as time-sequences), we are facing the
challenge of efficiently storing, retrieving and analyzing
thisdata. Frequent queries on thisdata set isto find trends
(e.g., global warming) or surprises (e.g., undersea volcano
eruption) within the original time-series. The challenge,
however, isthat these trend and surprise queries are needed
at different levels of abstractions (e.g., withinthe last week,
last month, last year or last decade). To support these
multi-level trend and surprise queries, sometimes huge
subset of raw data needs to be retrieved and processed. To
expedite this process, we utilize our TSA-tree. Each node
of TSA-tree contains pre-computed trends and surprises at
different levels. Wavelet transform is used recursively to
construct TSA nodes. As a result, each node of TSA treeis
readily available for visualization of trends and surprises.
In addition, the size of each node is significantly smaller
than that of the original time series, resulting in faster 1/0
operations. However, a limitation of TSA-tree is that its
sizeislarger than the original time series. To address this
shortcoming, first we prove that the storage space required
to store the optimal subtree of TSA-tree (OTSA-tree) is no
more than that required to store the original time-series
without losing any information. Next, we propose two
alternative techniques to reduce the size of OTSA-tree even
further, while maintaining an acceptable query precision
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961518, and unrestricted cash/equipment gifts from Intel and NCR.
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as compared to querying the original time seguences.
Utilizing real and synthetic time-sequence databases, we
compare our techniques with some well known algorithms
such as DFT and SVD in both performance and query
precision. The results indicate the superiority of our ap-
proach. Finally, we show that our techniques are scalable
asweincrease either the database size or the length of time
sequences.

1. Introduction

With the explosion of scientific observation data (some
of which are time-series), we face the challenge of storage,
retrieval and analysis of thisdata. For example, as part of a
joint project that we defined with Jet Propulsion Laboratory
(JPL) for NASA!, the temperature, pressure and refractiv-
ity of certain coordinates on earth are recorded every hour at
different ground stations. This datais going to be populated
in databases for on-line access by experts around the world.
The data can be represented as a matrix of size M x N,
where M isthe number of ground stations while N is the
number of observations (e.g., temperature) recorded every
hour for the past decade. Hence, with these applications, M
isin the order of hundredswhile N might be in the order of
hundreds of thousands. Other types of similar applications
are stock quotes of companies for the past 10 years, where
N = 3650 (assuming only one recording per day), while
usualy M = 100 (fortune 100 companies) or M = 500
(fortune 500 companies).

1The project is entitted GENESIS: GPS environmental and earth
science information system. In this project, signals from GPS satel-
lites are processed and analyzed to extract the atmospheric data (see
http://genesisjpl.nasa.gov).



Typical queries on the above mentioned data sets are,
however, different than conventional point queries. For ex-
ample, a query to acquire the temperature of a specific sta-
tion at a specific time and date is not very frequent. The
more frequent queries are of the nature of identifying (or vi-
sualizing) the trends and surprisesin the data set at multiple
levels of abstractions®. For example, consider the following
queries:

Q1. Find the cities where temperature has been increasing
during the last month.

Q2. Find the cities where temperature has been decreasing
during the last decade.

These querieslook for rising and falling trends. However, it
isnot usually required that the temperature really go up (or
down) at every moment; some “small” movement at the op-
posite directionisallowed, whichisjust “noise” comparing
tothemaintrend. Thetolerancerangeof “noise” dependson
the length of trends the user isinterested in. With Q1, some
small downward movement withinaday can probably beig-
nored, while with Q2 some small upward movement within
amonth can probably be safely disregarded. In other words,
some relatively small scale deviation from the general trend
can be tolerated when one is looking for an overall large-
scale trend. We denote these types of queries as multi-level
trend queries.

Similarly, frequent queries are submitted to identify sur-
prises within a data set. For example:

Q3. Find the cities where temperature has sudden changes
(daily) during the the month.

Q4. Find the cities where temperature has sudden changes
(monthly) during the last decade.

Again with Q4, sudden changes within aday or two can be
ignored. Furthermore, at thelevel of years, we may beinter-
ested in surprises such as “rising quickly at the first month
and decreasing quickly during the next month”. We denote
these types of queries as multi-level surprise queries.

Although at first glance it seems that we need to retrieve
and process a huge subset of raw time-series datato support
multi-level trend and surprise queries (e.g., 10 years of data
needsto be retrieved and processed for Q4), we show that by
storing pre-computed trends and surprises at different levels
of abstractions, these queries can be supported much more
efficiently.

In this paper, we propose a novel tree-like data struc-
ture termed TSA-tree (stands for Trend and Surprise Ab-
stractions). The root of this tree is the original time series

2Wefocusour attention on the efficient storage and retrieval of time se-
riesdata. A good body of work exists on how to processsimilarity matches
onthis datathat can be used as a complement to our work (see Section 2).

while each internal node (or leaf) is constructed by apply-
ing wavelet transform to its parent. We prove that by uti-
lizing the wavelet transform, we can naturally split a time-
series sequence into two nodes where one node captures
the trends and the other the surprises within the original se-
guence. Hence, as we traverse down the tree, and apply-
ing wavel et recursively to trend sequences, we increase the
level of abstraction on trends and surprises. Meanwhile, we
show that as we traverse down the tree, the size of nodesde-
crease by half. Therefore, the higher the level of abstrac-
tion required by the trend and surprise queries, the better
the performance of the system to support these queries (the
rate of improvement is exponentia). In sum, the nodes of
TSA-trees can immediately be used to visualize trends and
surprises at different levels. They not only need a small
post processing, but also are much smaller in size as com-
pared to original time series. Hence, the performanceisim-
proved due to both eliminating the CPU-bound processing
and significantly reducing the I/O cost of retrieval. When a
trend/surprise query is submitted, we find the best matched
level in TSA-tree, and fetch the corresponding node to dis-
play it to the user (for visualization).

In addition, we consider different scenarios where TSA-
tree cannot be stored on magnetic disk(s) in its entirety.
We prove a specific subset of the tree (specificaly, al its
leaf nodes) is the optimal subset to be kept on disk, termed
OTSA-tree. The size of OTSA-tree is shown to be iden-
tical to the size of the original time-series. For the cases
where the storage space is scarce, we propose aternative
techniques to reduce the size of OTSA-tree further by drop-
ping nodes and/or coefficients with less energy. The result-
ing condensed OT SA-tree, hence, becomes a competitor to
other techniques discussed in the literature such as Discrete
Fourier Transform (DFT) [2, 3] and Single Value Decom-
position (SVD) [20]. Therefore, we conducted comprehen-
sive experiments to compare our results with those tech-
niques. Briefly, we outperformed SVD and DFT in both per-
formance and accuracy for our application. Thisis because
SVD performs poorly when N >> M and DFT cannot
maintain the surprises due to only keeping the first few co-
efficients.

The remainder of this paper is organized as follows.
Section 2 provides some background material on related
work. Section 3 introduces TSA-tree and explains the pro-
cedure of trends and surprises mining using wavelet trans-
form. In Section 4, we discuss issuesin reducing the size of
TSA-tree. Section 5 provides a discussion and analysis on
our technique and compares it with other traditional meth-
ods. Finally, Section 6 concludes the paper and provides an
overview on our future work.



2. Related wor k

Traditional methods of time series analysis are mainly
concerned with decomposing aseriesinto atrend, a seasonal
variation, and other “irregular” fluctuations[8, 14].

Vi =Ti + Sc + Z¢ )

where 7; is the “trend” component, .S; is the “seasona”
component, and Z; isthe “irregular” or “random” compo-
nent. Inthismodel, “trend” isloosely defined as*long term
change in the mean”. A difficulty with thisdefinition is de-
ciding what ismeant by “long term”. For example, climatic
time series sometimes exhibit cyclic variations over a very
long time-period such as a year (four seasons). If one just
had one season data, thislong time oscillation would appear
to be a trend; but if several hundred years data were avail-
able, the long term oscillation would be visible. A tradi-
tional method of dealing with non-seasonal data which con-
tains atrend is to fit a simple function such as polynomial
or logarithmic curve. For al curves of thistype, the fitted
function provides a measure of the trend. A second proce-
dure for dealing with atrend isto use a linear filter which
converts onetime series X = (x1, xa, ..., #,) into another
Y = (y1, y2,...yn) by the linear operation :

k
Yt = Z a;zie; t=1,2,..n 2

i=—m

where {«; } isaset of weights. In order to smooth out local
fluctuations and estimate the local mean, we should clearly
choosetheweightssothat ", «; = 1 and thenthe operation
isoften referred to as amoving average. Moving averageis
discussed in detail by Kendall [17], and itiswidely used in
stock dataanalysis (for example, see[27]). However, model
(2) requires pre-defined fitting functionsfor 73 and S; , also
assumes 7, isastationary time series®, whichin some prac-
tical cases (sharp changes) isinfeasible, and models (1) and
(2) cannot handle multi-level trends, i.e., how to deal with
“short term” trendsas well as “long term” trends.
Database community typically uses a curvefitting
method to obtain trends and movement. In [21, 28]
straight lines are used to approximate the time series,
and it employs divide-and-conquer technique to segment
before approximation, which is time-consuming and loses
surprise information. Qu et. a, [24] use linefitting to
obtain multi-scales movement. In their study, a pattern is
defined as a regular expression of letters, where each letter
describes a movement direction and covers a specified
length of time (called pattern unit length). To find that
the time series (or part of it) matches a pattern, the time
series is first partitioned into consecutive sub-series if the

3 For the definition of stationary time series, consult [14].

distance between the best fitting line and the sub-series is
within a specified tolerance. The complexity of line-fitting
isof O(n?), where n is the length of the input time series.
With our method, the complexity can be reduced to O(n)
to obtain multi-level trends, and the accuracy is higher
due to employment of curvefitting (via wavelet) versus
line-fitting. Finaly, to the best of our knowledge, using
uniform wavel et-based model to capture both surprises and
trends at multi-levelsis unique.

Traditional surprise detection methods are usualy re-
ferred to as outliers, or surprises inour daily life. There
are two steps in traditional outlier analysis, the first step is
generaly an inspection of plots of the origina data. Such
plots help one defines the nature of the data. The plot of the
data against time is often sufficient to identify very extreme
observations, i.e. outlier [1, 18, 19, 4]. However the out-
lier detection techniques are expensive when compared with
the wavel et transform and it cannot capture multi-level sur-
prises.

In this paper, we aso try to provide an efficient way for
placing TSA-tree on disk. By reducing data volume, we
can achieve less disk 1/0 and efficiency for some aggregate
queries. In [20], Korn et. a use singular value decompo-
sition (SVD) transform to map a huge matrix into a much
smaller one. By data compression, they can support ad hoc
gueries on large volume of data sets. However, there are
some problemsinherentinthe SV D method. With SVD, any
M x N matrix X can be written as the product of a M x r
column-orthogonal matrix U/, ar x r diagona matrix A and
ar x N row-orthogonal matrix V, i.e.,, X = UAV (where
r isthe rank of the matrix X). Subsequently, SVD recon-
structs each row of X by multiplying one row of U to the
entire A and V/, thus, the complexity of reconstructing each
row is O(|V|), where |V] isthe size of V. There are three
assumptionsin [20] that do not hold within our applications:

1. M>>N.

Within our applications M and N may bein the same
order or even M << N. Therefore, O(|V]), the com-
plexity to reconstruct arow of X, isnot small anymore.
To addressthisproblem, if we naively try to apply SVD
tothetransposeof X (as X’), then SV D will not be op-
timal anymore due to correlation within the columns
of X’ and not withinitsrows. That is, let Y = X',
Therowsof X becomethecolumnsof Y, and we apply
SVD suchthat Y =X’ = V/AU’. When we want to re-
trievea column of Y, we need theentireVV/, A, and one
column of U’. Thus, the complexity isstill O(|V]).

2. N isinthe order of hundreds.
However, with our applications, N can be large and
hence the complexity of reconstructing one row of X
i.e, O(|V]) islarge.

3. X isnot updated.



However, with our applications, X must be updated
daily or monthly. SVD hasto recompute thewhole ma-
trix again to update, but wavelet only need to add new
coefficients at the end of each TSA-tree node.

In the database literature, much work has been done on
guerying time series data. Most of the effort, however, has
been on similarity queries [2, 3, 6, 13, 26, 25, 28]. Some
of these works can be considered as a complement to our
study, to perform similarity match on trends and surprises
(i.e., TSA-tree nodes). With data mining applications, it is
often necessary to search within a series database for those
series that are similar to a given query series in the pres-
ence of noise. Agrawal et. a, [2] map time series into the
frequency domain using the Fourier transform and keep the
first few coefficients in the index for similarity searching,
meanwhile, a query processing algorithm that uses the un-
derlying R-treeindex of a multidimensional data set is pro-
vided to answer similarity queriesefficiently. Chanetal. [7]
uses wavelet transform instead of the Fourier transform and
also keeps thefirst few coefficients for similarity searching.
The shortcoming of these methodsis that they drop the sur-
prises.

3. A Tree for Multi-level Trend and Surprise
Abstractions (T SA-tree)

In this section, we explain the design of a new wavelet-
based data structure, termed TSA-tree, which can be con-
structed for each time sequence data (i.e., each row of the
M x N matrix). Therefore, we need to keep M TSA-trees
per matrix. Later in Section 4, we propose techniquesto re-
duce the size of each row (or TSA-tree) to make it smaller
thanthe original timeseries. During our performance evalu-
ation, Section 5, we compare the storage reguirement of the
entire matrix to that required by other techniques.

Wavelet theory involves representing general functions
interms of simpler, fixed building blocks at different scales
and positions. This has been found to be very useful in
several different areas, such as sub-band filtering, quadratic
mirror filters, and pyramid schemes in the area of signa
and image processing, for the collections of references see
[5, 9, 10, 12, 23]. We can use wavelet transform to ob-
tain multi-level trends and surprises in a uniform scheme.
Towards this end, we introduce an operation termed split
to generate a multi-level tree, where each node denotes the
wavel et coefficients of the corresponding multi-level trends
and surprises. In this section we first formally define the
splitoperation. Next, we define an inverse operation, termed
merge. Subsequently, we prove that both split and merge
operationsare losslessand reversible. Finally, we show how
these two operations are used to build a TSA-tree and how
we can utilize TSA-tree for trends and surprises mining.

3.1 Split and merge Operations

For time series X = (xg, 21,...,%p—1), We US| X| to
denote the length of X, i.e, the number of dataitemsin X,
inthiscase | X| = n. Weaso use || X|| to denote the norm

of X,ie, || X] = \/xg Fal el

Definition 3.1: C'onvolution (cyclic) is an operation be-
tween two sequences X = (zg, 21, -, &p—1) and H =
(ho, hi, -+, hi—1), the result is a sequence Y with same
length as X, wherey,, = Y_'_! h;x,_; when indices are
out of range, we pad the sequence with zero values. We de-
note convolutionasY = Conv(X, H) Il

Example3.2: If X = (2,1,3,-1)and H = (0.1,0.5),
then Conv(X, H) = (—0.3,1.1,0.8,1.4)1

Definition 3.3 Down — Sampling (by 2) is an operation
which takes a sequence X = (g, %1, ..., £2,—1) @ input
and produces asequence Y = (w,y1, ..., Yn—1) 8S OUtpUL,
wherey; = xg;41 for ¢ = 0,1...,n — 1. Y has half
length of X, denoted asY = Down — Sample(X) 11

Example34: For X =
Sample(X) = (1,-1).1

(2,1,3,-1), Down —

For agivenwavel et transform, two pairs of sequencesare
associated with it. The first pair is called wavelet analysis
filters, denoted as H,,, GG,. The other pair is called wavel et
synthetic filters, denoted as H;, G;. They are uniquely de-
termined by the wavelet transform. For example, for the
Haar wavelet, the simplest and most popular wavalet given
by Haar [15], the wavelet analysis filters associated with
Haar wavelet are:

H, = (1/V2,1)V2) Go=(=1/V2,1/V2)

The wavelet synthetic filters associated with Haar wavelet
are:

He=(1/V2,1/V2) Gs=(1/V2,-1/V2)

Now, the split operation can be defined using the
Down — Sampling and C'onvolution operations. That is,
for atime sequence X = (xg, 1, ..., £p—1), WE CAN USE
split operation to get trend sequence AX and surprise se-
quence DX . The algorithm for split operationisillustrated
in Figure 1. The complexity of split operation is O(nl),
where [ isthe length of filter H and G, and n is the length
of original time series.

Reversibly, for two equi-sized sequences AX and DX,
merge operationisto obtainatime sequence X by AX and
DX, where | X| = 2|DX| =2|AX|. The merge operation
can be defined usingthe U p — Sampling and C'onvolution
operations.



{AX, DX} = split(X)
begin
Temp-AX = Conv(X, H,)
Temp-DX = Conv(X, )
AX = Down-Sample(Temp-AX)
DX = Down-Sample(Temp-DX)
end

X = merge(AX, DX)
begin
Temp-AX = Up-Sample(AX)
Temp-DX = Up-Sample(DX)
X = Conv(Temp-AX, H,) +
Conv(Temp-DX, Gy)
end

(a) Algorithm for spl:t operation

(b) Algorithm for merge operation

Figure 1. Split and merge operations

AX1 DX1

Ax2 Dx2

Figure 2. TSA tree

Definition 3.5 Up— Sampling isan operation which takes
asequence Y as input and produces an output sequence X
of property: z3, = y, and z2,4+1 = 0, where X hastwice
the length of Y, denotedas Y = Up — Sample( X )l

Example3.6: For Y =
(2,0,3,0)11

(2,3), Up — sample(Y) =

The agorithm for merge operation is illustrated in
Figurel. The complexity of merge isalso O(nl).

3.2 Propertiesof TSA-tree

A TSA treeisconstructed by applying the split operation
on AX,’srepeatedly. That is, we start by applying split on
X toobtain AX; and DX;. Subsequently, we split AX;
into AX, and D X,. Thisprocedurerepeats k timesin order
to construct a TSA treewith & + 1 levels (see Figure 2).

Thereare two major propertiesof TSA-tree that makethe
structure appropriate for efficient multi-level trends and sur-
prises mining. First, each node of TSA-tree can be recon-
structed by “merging” its children without losing any infor-
mation (i.e., merge is lossless, see Lemma. 3.7). Second,

each pair of sibling nodes of TSA-tree preserves the energy
of its parent’stime series. Below we prove these properties
for the Haar wavelet [Mal89].

Lemma3.7. We can reconstruct AX; (Notethat AX, =
X) from AX,;+, and DX;11 by merge operation, i.e,
if {AXZ'+1,DXZ'+1} = Split(AXi), then, AX; =
merge(AXiy1, DXiy1).

Proof: For* AX; = (zo, 1,22, 23), dueto the split op-
eration, after Conv, we have Temp_AX;11 = AX;H,
Temp_DX;y1 = AX,;G,whereH and G are two matrices
determined by wavelets analysisfilter, for Haar wavelet,

1 1 0 0
1 0 1.1 0
H=7100 11
1 0 0 1
11 0
1| o -1 1 o
“=xml o 0o 1
1 0 0 -1
After Down — Sample,
AXip1 = (ao,a1) = (xo, 21, 22, 23)P (©)
DX;11 = (do,d1) = (0,21, x2,23)Q 4
where
1 0
1 1 0
P=%1 01
0 1

4 For the sakeof illustration, we assumed |A X ;| = 4. The extensionto
larger sizesof AX; isstraightforward.



1 0

1 -1 0
Q=751 o 1
0 -1

Due to the merge operation, after Up — Sample and
Conv operations, we have :

01 0 0
1 01 0 0
TXi+1 = (x0a$1a$2a$3)ﬁ 00 0 1 H

0 0 0 1
0 -1 0 0
1 0 1 0 0

SXi+1 = ($0a$1ax2a$3)ﬁ 0 0 0 —1 (_G)
0 0 0 1

TXiy1 +5Xip1 = (o, 21, 29, 23) = AX;
|

Lemma3.8 Split isaninverse operation of merge, i.e.,
IfAXZ = merge(AXHl s DXi+1)1 then {AXZ'_H, DXZ'+1}
= split(AX;).

Proof: This can be shown by multiplying the matrix P to
both sides of Eq.( 5) to obtain AX;1; = AX;P. Simi-
larly, by multiplying the matrix Q to both sides, we obtain
DXt = AX;Q. 1

In addition, we prove that split preserves the energy of
its original time series. That is, thereis no false dismissa
with the split operation.

Lemma3.g ||X||? = [|[AX1|? + | DX1])%

Proof: For X = (wg, 21, %2, 23), given Eq. ( 3)( 4) and
combining P and Q into one matrix, we obtain :

11 0 0
1 _
co L1 10 0
Zlo o 11

0 0 1 -1

Note that matrix C is an orthogonal matrix, i.e.,, CC’ = 1.
By usingmatrix C, wecan rewrite Eq. ( 3)(4) intooneequa
tion:

W — (a0ad0aa1ad1) = (x0a$1a$2a$3)c
IAXL|1® + [|DX1])* = ag + af + dy + di = W]
W2 =WW = XCC'X' = XX' = || X
|

Lemma3.10 ||X|| = |AXK(]? + S0, [[DX|1%

Proof: By lemma 3.9, || X|]* = ||AX1||2 + [|DX1|]* =
JAX[]? + | DXo|]? +[| DX1* =

3.3 Algorithmsfor trends and surprises mining

Given atime-series graph, at thefirst glance, one can ob-
serve its trend, which is the general direction in which the
time-series tends to move. Trends mining strives to obtain
the tendency of movement from the time-series data. The
multi-level trends are trends in different levels of details.
For example, the monthly trends have more details than an-
nual trends. The algorithm for trends mining is shown in
Figure 3(a), and aresultis shownin Figure 6. Itisimportant
to note that when the trend queries have ranges that do not
match with node boundaries, we need to retrieve the closest
parent nodewhose boundariescontain the query boundaries,
then, apply the agorithm shown in Figure 3(a). For ex-
ample, if X isdaily temperature recording, A X, and A X5
will contain trendsfor 4-day and 8-day temperature, respec-
tively. If aquery is submitted for weekly average tempera-
ture, weretrieve A X, and compute 7" X, by applyingtheal-
gorithm of Figure 3(a). From 7" X » we can compute weekly
average, which according to our experiments (see Figure 11)
is almost as accurate as the result obtaind by using original
time series. The same argument holds for surprise queries.

Time-series observations are sometimes influenced by
interruptive events, such as strikes, outbreaks of war, sud-
den political or economic crisis, unexpected heat or cold
waves. The consegquences of these interruptive events cre-
ate unusual observations that are inconsistent with the rest
of the data. Aswith many important concepts, what defines
asurprise is difficult to specify. Thisis because an unusual
event requiresacompl ete specification of astatistical model.
Similar to multi-level trends, multi-level surprises are sur-
prisesin different levels of abstraction. For example, an un-
usual change of temperature in the previousweek isa*“ short
term” surprise, while an unusual change of temperature in
the previous year is a“long term” surprise. The algorithm
for surprisesmining is shown in Figure 3(b). Our definition
of surprisescan beformalized as sudden changesinthe orig-
inal time series data, which are captured by local maximums
of absolute value of S X ;s (see Figure 7).

4. Reducingthesize of TSA-tree

Trividly, the most efficient way for mining trend and
surprise sequences is to store the entire TSA-tree on disks.
However, the size of the entire TSA-tree is approximately
three times the size of the original time-series (assume we
split al the way down until the size of nodes becomes 1).
When the original size is 27, the following equation com-
putes the size of TSA-tree:

242 x (1424274 42" =3x2" -2 (5

Hence, due to disk space limitation, we might not be able
to maintain the entire TSA-tree disk-resident. That is, part



TX; = Trends — Mining(TSA — Tree, 1)

begin
feteh AX; from T'SA — Tree;
TXZ' = AXZ';

forlevel =i downtol
Temp = Up — Sample(TX;);
TX; = Conv(Temp, Hy);
end
end

SX; = Surprises — Mining(TSA — Tree, i)
begin
feteh DX; from TSA — Tree;
SXZ' = DXZ';
forlevel =i downto0
Temp = Up — Sample(SX;);
SX; = Conv(Temp, Gy);
end
end

(a) Algorithm for trends mining

(b) Algorithm for surprises mining

Figure 3. Algorithm for trends and surprises mining

of TSA-tree may need to be stored on tertiary devices (e.g.,
tapes). However, we can use a nice property of TSA-tree
where all the internal nodes can be reconstructed from leaf
nodes (see Section 3.2). To identify the optimal subtrees
given the available disk space S ., we assume that the costs
of merge and split operations are negligible as compared
to the cost of disk 1/0O operation, and the cost of access-
ing/retrievinga TSA-nodeisdirectly proportional tothe size
of the node 5. In this section, we prove that when the avail-
able space S is greater than the original size of time se-
ries, we can always find a subtree to store on disk without
introducingany error. Furthermore, when the available stor-
age space is equal to the original size, the optimal subtree
is exactly the leaf nodes of TSA-tree, which is denoted as
OTSA-tree asin Def. 4.5. We discuss these two cases in
Section 4.1. Finally, we consider the case that al the leaf
nodes can not be kept on disk. In this case, we propose two
methods to reduce the size of OTSA-tree further: OTSA-
tree with node dropping and OT SA-tree with selective co-
efficient dropping, which are discussed in Section 4.2 and
Section 4.3, respectively.

4.1 Optimal TSA-tree

In this section, we formally prove that the storage space
required to store the optimal subset of TSA-tree (OTSA-
tree) is identical to the size of the original time series. To
show this, we assume Acost(.S) isthe cost to access the sub-
tree S, which isdirectly proportional to |.S|.

Definition 4.1 Optimal TSA subtree: A subtree S7" of TSA
whichfitson thedisk (i.e., satisfies|ST| < SL) and hasthe
minimum Acost(ST). Il

5Thereis of course, an overhead of disk seek operation to retrieve each
nodeof thetree. Sincethis overheadis considered as aconstant cost added
to al theretrievals, it has been ignoredin our model.

Lemmad4.2. The optimal TSA subtree S will store all the
leaf nodes before storing any internal node.

Proof: We prove this lemma by contradiction. Suppose S
isan optimal TSA subtreethat contains at least oneinternal
node, say A X;, withoutincluding at least one leaf node, say
DX;. Letusconstruct another TSA subtreecalled S, by re-
placing AX; withitschildren, AX;,; and DX;41,inS. Ig-
noring the negligiblecost of merge operation, we can always
obtain AX; from S’ with no extra cost as compared to that
of S, i.e, for now at least Acost(S') = Acost(S). Further-
more, |.S| = |S’|. Now we actually show that Acost(S’) <
Acost(S) by considering the following two cases:

(1) If DX;4, isdready in S, then S’ can use the extra
space to store DX ; (or part of DX ;). Hence, for queries ac-
cessing DX, the cost will decrease and hence Acost(S') <
Acost(S).

(2) If DX;41 isnotin S, and since we know that it is
now in S’ then for queries accessing DX, 1, the cost will
decrease and hence Acost(S') < Acost(S).

Therefore, S is not the optimal subtree of TSA. Contra-
diction. i

Utilizing Lemma 4.2, we now cover three scenarios
where the available disk space isless than, equal, or greater
than the total size of the TSA leaf nodes | L|.

Theorem 4.3: If SL <= |L]|, then all the nodes in the
optimal TSA subtree are leaf nodes.

Proof: Suppose S isan optimal TSA subtree. If thereisan
internal nodein S, since SL <= |L|, so there must exist a
leaf nodethatisnotin S. Hence, from Lemma 4.2, S isnot
optimal, which isa contradiction. il

Theorem 4.4: If SL = | L], then the optimal TSA subtreeis
exactly identical to the set of all the leaf nodes.



Proof: Suppose.S isanoptimal TSA subtree. Since SL <=
|Z|, from Theorem 4.3, we know all the nodesin S will be
leaf nodes, so .S C L. From |S| = SL = |L|, we know
that S = L, sothe optimal TSA subtree S stores al the leaf
nodes. i

Definition 4.5 If the available storage space is equal to the
size of the original time series X (i.e,, | X| = SL), thenthe
optimal TSA-tree will be exactly identical to the set of al
the leaf nodes (see Theorem 4.4). This optimal subtreeis
defined as OTSA-tree. I

Lemma4.6. Thecost to obtain A X; by merging any of its
disk resident descendantsis | AX;| (independent of the fact
that the descendant isimmediate or not). However, the cost
toobtain A X; by splittingitsdisk resident ancestor at % level
aboveis 2% x |AX;|.

Proof: The proof istrivia by using deduction. i

Theorem 4.7. If SL > |L|, the optimal TSA subtree con-
tains all the leaf nodes, where storing more internal nodes
only improves the performance marginally.

Proof: The first part of the theorem can be derived from
Lemma 4.2 and the second part can be derived from
Lemma4.6. 11

4.2 OTSA-tree with node dropping

Now, for the case that the available space is|ess than the
original timeseries, weneed toreduce thesize of OTSA-tree
further. By looking at the distribution of wavelet coefficient
values of OTSA as shown in Figure 4, where the X-axisis
partitioned by D X;’s, most of the data items in leaf nodes
are almost zeros, thus, we can reduce the space required for
OT SA-tree by dropping those leaf nodes with less energy.

The problem of OTSA-tree with node dropping can be
presented formally as:

Given : theavailable disk space SL,

Find : asubset S of OTSA nodes which can fitin thelim-
ited disk space,

Swueh that : we minimize the distance from the original se-
ries X to the series X, where X is the series reconstructed
from S.

A naive approach is to first construct the space of all pos-
sible subsets of OTSA-tree that can fit on the disk and then
reconstruct asequence X for each subset. Subsequently, we
can compare the distances of the sequences between X and
all X’sto find the subset with the minimum distance, which
determines the optimal set of leaf nodes we should keep on
the disk. Suppose the length of X is n, the number of |eaf
nodes is log-n, then, the number of al possible subsets of

leaf nodes is 2/°92" = n, considering the time for recon-
struction, the total complexity is O(n?). However, our ap-
proach has a complexity of O(n) by using the property of
wavel et transform, as shown by the following discussion:

Lemma4.8: Suppose We reconstruct a new sequence X
from a subset of OT'S A by dropping some nodes. Let us
denote the set of dropped nodes as S. The distance from
X to X is the sum of the norm? of nodes in set 9, i.e,
X = X[ = 5,0 puees lInode]?

Proof: Suppose we drop one node D X;, and reconstruct X
from the remaining nodes in Leaf N odes. By lemma 3.8,
split isinverse of merge. Hence, we know that OT SA-tree
of X issame asthat of X except for DX;, which is 0 for
X. By lemma3.10,|| X — X||? = ||DX;||?. Sincethe node
we chose was arbitrary, and we can drop another node after
DX;, by induction, thelemmaistrue. I

The lemma 4.8 provides us a very desirable property
that the error is summable with respect to each node. By
this property, the optimal problem can be reduced to the
Fractional Knapsack problem [11] where a greedy algo-
rithmwith O (n) complexity resultsin the optimal solution®.
However, we need to define the value and cost for each
node of OTSA-tree. The value is directly proportiona to
the norm? of a node, and the cost is the size of a node.
Hence, the greedy algorithm suggests to start constructing
the optimal subtree by choosing the nodes with higher val-

Ues o %. We denote this algorithm as OTSA-
w/nd.

4.3 OTSA-tree with coefficient dropping

A drawback with the dropping method proposed in Sec-
tion 4.2 isthat we may lose surprises if the dropped node(s)
contains some outliers. In this section, we propose an al-
ternative method to save those outliers separately. We store
an outlier as a triplet (level, i, value), which represents
the ith data item of level with value. To condense fur-
ther, we consider OTSA-tree as a sequence, with tuples
(position, value) instead, where position isthe position of
a coefficient in the sequence .

Now, the optimality problemis changed to :

Given : the available disk space SL,

Find: asubset.S of OTSA coefficientswhich can fitinthe
limited disk space,

Swueh that : we minimize the distance from the original se-
ries X to the series X', where X is the series reconstructed
from S and outliers selected to be stored on disk.

Similar to Lemma 4.8, theerror from dropping one dataitem

6To be accurate, for the last node that should be stored partially on the
disk, we should store those coefficients with maximumenergy valuesrather
than the first few coefficients (more on this in Section 4.3).
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Optimalplacement(OTS A, Space — Limait)
begin
Find m, which is the number of coef ficients
affordto store within Space — Limut;
One pass of OTSA
find 2m mazimum coef ficientsinOT S A;
fori = 1 : Number of OTSA — nodes
find k;,the number of coef ficients
i i — th node;
do
if(2k; > |i — th node|)
store the i —thleaf node;
(instead of coef ficients)
2k; =0
store the remaining maximum
coef ficients in extra space;
until any i (2k; < |i — th node|)
end

Figure 5. OTSA with hybrid coefficient drop-
ping

isequal to the square of the coefficient itself. Hence, the to-
tal error isthe sum of energy corresponding to each individ-
ual coefficient. We again use F'ractional K napsack reduc-
tion. The value now isthe norm? of the coefficient, and the
cost isthesize of the coefficient, whichisfour bytes per co-
efficient (float). Therefore, the optimal result should main-
tainthe & coefficientswithmaximumvalueson disk. Theal-
gorithmfor finding the optimal OTSA with coefficient drop-
ping isshown in Figure 5.

Thisalgorithm requires one pass over OTSA coefficients
to sort them with the complexity of O(nlogn). Subse-
quently, it needs a second pass on all OTSA nodesto decide
either keeping several coefficientswith maximal energy val-
uesor theentireleaf node. To eliminate the second pass, we
propose two near-optimal heuristics: OTSA with tail coeffi-
cient dropping(OT SA-w/tcd) and OTSA with selective coef-
ficient dropping(OTSA-w/scd). The former keeps the first
few coefficients of the entire OTSA and dropstherest. The
latter keeps the coeffi cients with maximum energy in OTSA.
A drawback of thelatter isthat it needs extrastorage spaceto
keep the index of the kept coefficients, but it observes a bet-
ter performance when thetime series include many outliers.
The optimal algorithm shown in Figure 5 can be considered
as ahybrid version of OTSA-w/scd and OTSA-wi/tcd. This
is because, it switches from one approach to the other de-
pending on the space requirement of each approach.

5. Performance Analysis

In this section, we conducted four sets of experiments
to evaluate TSA-tree for various scenarios and applications.
First, we graphically verify that our method can be used to
visualize trends and surprises at multiple levels of abstrac-
tions. For the second set of experiments, we compared our
OTSA-tree with DFT [2, 3] and SVD [20] on the accuracy
of reconstructingtheoriginal time seriesfrom the condensed
estimations when the storage space is scarce. The experi-
ments showed that even though the complexity of our re-
construction algorithm is less than those of DFT and SVD,
the accuracy of our results are comparable. The third set of
experiments were performed to demonstrate the superiority
of the multi-level structure of OT SA-tree in supporting ag-
gregate queries at multiple levels (e.g., weekly, monthly).
Here, we show a significant improvement in I/O opera-
tionsover SVD dueto immediate access to higher level and



hence smaller nodes of OTSA-tree as opposed to the orig-
inal time series. Finaly, we study the impact of increasing
the database size and time series length on the performance
and query precision of OTSA-tree. The results demonstrate
the scalability of our approach.

For al the experiments we either used real time series
datafrom SP500 stock prices of 1998 [22], or synthetic data
generated by the random walk algorithm, which is reported
as agood model for mimicking stock prices [8]. The rea-
son we used synthetic datais that we did not have access to
real time series with length higher than 365 (i.e., one year
of stock quotes). Therefore, we fixed the o parameter of
random-walk at 0.9, which we demonstrate it can generate
time series consistent in form with our real data (see Sec-
tion 5.2 for details). In addition, throughout this section, we
used standard distortion measure between two time series
X and X, whichis computed as “%U as our measure to
compute the percentage of error for both query and recon-
struction precision.

5.1 Visual verification of trends and surprises
mining

Figure 6 shows the multi-level trends on annual copper
prices[16] (specifically, levels A X; to AX5). Asitisshown
in the figure, more details are captured by the lower level
T X1 (seeFigure 3(a) for computing 7'X; from AX;), while
less details are shown at the higher level T'X5. However,
for al the T'X;’s, the genera trends are the same and they
reflect that of the original time series. Figure 7 depicts the
effectiveness of our method in capturing surprises at differ-
ent levels. Similar to Figure 6, lower level SX; (see Fig-
ure 3(b) for computing SX; from D.X;) has more details,
while higher level SX5 is more abstract. Again the gen-
eral surprises for al levels are the same. In Figure 8, we
show the trends at multiple levels using two other wavel et
filters: Haar in Figure 8(a) and DB2 in Figure 8(b), whilein
Figure 6 and Figure 7, we had chosen DB4 as the wavelet
filter (see [12] for references of DB2 and DB4). Different
wavel et filters have different extent of smoothness and com-
plexity. Users can choose different wavelet filters depend-
ing on the required/tol erable smoothness and complexity for
trends and surprises.

5.2 Spacevs. accuracy

In this section, we compare the percentage of error in re-
constructing M original timeserieswithlength N fromtheir
corresponding condensed versions. The condensed versions
were generated by four different techniques: DFT, SVD,
OTSA-wi/ted and OTSA-w/scd. We varied the length of
time series, NV, from 252 up to 2048.
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Figure 8. Multi-level trends with alternative wavelet filters

Theresultsare showninFigure9and 10. The X-axisrep-
resents the available space which isa percentage of the size
of thedatabase (i.e., M x N), and the Y-axisisthe percent-
age of the observed reconstruction error. In Figure 9(a), we
used M = 20 real time series data from our SP500 source.
The length of these time serieswere N = 252. The results
show the superiority of OTSA-w/scd over the others. SVD
performs poorly at the beginning when the available space
isvery limited dueto thefact that it keeps afew coefficients
diagonallyinthe M x N matrix of time series data. To per-
form the same experiment on larger values of M and NV, we
failed to find real time series data. Therefore, we used ran-
dom walk to generate synthetic data. In order to befair, as
shown in Figure 9(b), we strive to mimic the real data us-
ing random walk. We determined ¢ = 0.9 can generate the
most consistent results to those of real data.

Thus, for the remainder of our experiments, we fixed o
at 0.9, increased M to 100, and varied N from 512 to 2048.
The results are summarized in Figs. 10(a)-(c). In sum, the
same trend has been observed for DFT and SVD. An inter-
esting observation is that while OTSA-w/scd continued to
be sufficiently and consistently accurate, OTSA-w/tcd also
performed well. This is because for large time series, the
choice of which coefficients to keep becomes less critical.
Therefore, OTSA-w/tcd benefits from the fact that it saves
space by not keeping the index of the kept coefficients. Itis
important to note that the complexity of reconstruction for
SVDandDFT are O(N x M x k) and O(M x N xlogN ), re-
spectively, where k isthe number of kept coefficients. This

is while with OTSA-w/tcd, the complexity isonly O(M x
N).
OTSA-w/scd started to consistently outperform SVD at
N = 2048, because when M << N, most of the redun-
dancy of data is within the time series, and not across the
time series. To illustrate, consider the extreme case, when
M =1, N = 100, SVD can not reduce the data volume be-
cause the reduced diagonally matrix must have at least one
entry. However, OTSA can find the correlation across the
time dimension.

5.3 Theadvantages of multi-level support

Through the previous set of experiments we demon-
strated that under identical storage limitations OTSA if not
better, isat least as accurate as any other techniquein recon-
structing the original time series from its reduced version.
In addition, it can perform the reconstruction faster. How-
ever, we originally proposed OTSA not for space reduction
but for its superiority in supporting multi-level queries. For
example, consider we need to compute the monthly aver-
age temperature from a data set. With SVD, DFT and other
single-level techniques, the only optionis to reconstruct the
entire time series to support these aggregate queries. There-
fore, we not only observe the reconstruction overhead, but
also the entire time series need to be retrieved. With OTSA,
however, we only need to retrieve a smaller set of OTSA-
tree nodes to reconstruct (say) level i trend (AX;), which
reduces both the reconstruction overhead and the retrieval
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overhead by a factor of 1/2¢. We of course sacrifice accu-
racy, but we argue the error istolerableif the level of there-
trieved nodeis close enough to the query aggregation level 7.

Figure 11 supportsour argument. The X-axisisthe level
of the retrieved node, while the Y-axis is the percentage of
guery error as compared to the case of retrieving the original
time seriesto answer thequery. We assume that OT SA-w/nd
is used where only level 3 and above leaf nodes have been
stored (i.e., a compression ratio of 12.5%). We performed
the experiment for 100 synthetic time series data (o = 0.9)
with length of 2048 and averaged out the results to reduce
the dependability of the experiment from the form of the
data set. From Figure 11, we can see that the higher the ag-
gregate level, the lower the percentage of errors. This sup-
ports the fact that for queries with high aggregation level
(e.g., annual), we do not need to retrieve the entire data, and
only some of the TSA nodesat higher levelscan answer such
queries with high precision.

Figure 12 demonstrates the I/O gain of OTSA as com-
pared to SVD to answer an annual average query. The sig-
nificant gain comes from the fact that OT SA-w/tcd retrieves
only AXs or AX7.

5.4 Scalability and analysis

Finally, for the sake of completeness, Figure 12(ab)
demonstratesthat our techniques scale up aswe increase the
database size (i.e., number of time series), and the length of
thetime series. In these experiments we used synthetic data
(¢ = 0.9) and OTSA-w/tcd.

Figure 12(b,c) show thereconstruction error asafunction
of compression ratio and length of time series. The results
demonstrates that as we increase the length of time series,
OT SA-w/tcd becomes more accurate.

7 The same argument applies to surprise queries.
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Finally, we compare OTSA with DFT and SVD on the
initial time required to condense a time series and the time
required to update the condensed time series. The complex-
ity of DFT and SVD for theinitial condensingare O (M N x
lgN) and O(M N?), respectively. The computation com-
plexity for OTSA-w/tcd and OTSA-w/scd are O(M N') and
O(MN x lgN), respectively. For update and append op-
erations, since DFT and SVD require the processing of the
entire data set as well as the new data, their complexity is
higher than that of OTSA, which can take advantage of the
inherent locality of wavelet transform (e.g. Haar filter) for
updates and appends.

6. Conclusions and futuredirections

We proposed anovel data structure for multi-level trends
and surprises mining on time-series data, termed TSA-tree.
TSA-tree is constructed by recursively applying wavelet
transform on the original time series. We proved that a sub-
tree of TSA-tree, termed OTSA-tree, isequa in size to the
original time series and can be used to reconstruct the origi-
nal time series with no error. In addition, we proposed vari-
oustechniquesto reduce the size of OTSA-tree further while
keeping the query and reconstruction precisions at reason-
ablelevels.

We conducted many experiments and compared our ap-
proach with SYD and DFT, under N >> M assumption.
The results demonstrated that under identical compression
ratios (when the storage space is scarce), we can reconstruct
M original time seriesfrom OT SA-tree both faster and more
accurately as compared to SVD and DFT. In addition, the
complexity of initial construction and update of OTSA-tree
are less than those of SVD and DFT. Finaly, the inherent
multi-level structure of OT SA-tree resultsin significant im-
provement in the performance of multi-level trends and sur-
prises queries.



We intend to extend this work in three directions. First,
we are in the process of implementing TSA-tree within
our JPL GENESIS project®. We are using Informix Uni-
versal Server v9.2 as our main database server. The split
and merge operations are being implemented within our
time-seriesdatablade. Consequently, TSA-trees can be con-
structed (and updated) automatically, given time-series se-
guences as inputs. Next, we will use the second generation
wavelet transform [29, 30], to better adapt to day, week and
month scheme instead of using down/up-samplingby 2. Fi-
nally, so far we only studied trends and surprises on tempo-
ral data (i.e., time-series). However, with our application,
we also need to consider spatial trendsand surprises. There-
fore, weintend to extend thiswork to focus on spatial pattern
mining and eventual ly introduceaframework for spatiotem-
poral trend and surprise mining.
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